
Low Power Network Processor Design Using Clock Gating

Abstract— Network processors (NPs) have emerged as successful plat-
forms to providing both high performance and flexibility in building
powerful routers. Typical NPs incorporate multiprocessing and multi-
threading to achieve maximum parallel processing capabilities. We
observed that under low incoming traffic rates, most processing elements
(PEs) in NPs are nearly idle and yet still consume dynamic power. This
paper develops a low power technique to reduce the activities of PEs
according to the varying traffic volume. We propose to monitor the
average number of idle threads in a time window, and gate off the
clock network of unused PEs when a subset of PEs is enough to handle
the network traffic. To accommodate different applications and network
parameters (i.e. packet size, arrival rate), the thresholds of turning on/off
PEs will be dynamically tuned on-the-fly. We show that our technique
brings significant reduction in power consumption (up to 30%) of NPs
with no packet loss and little impact to the overall throughput.

I. INTRODUCTION

In today’s capital constrained environment, traditional focus on
network growth has been shifted to service profitability. Routers now
must support continually evolving requirements on aggregating a
range of network protocols and traffic types. The need in provid-
ing both high performance and flexibility is the key to designing
profitable routers. To meet such requirements, network processors
(NPs) have emerged as a new class of programmable processors for
packet processing. New generation of NPs offer high performance
through parallel processing architecture, which incorporates multi-
ple processing elements (PEs) configured as either independent or
pipelined units. Being programmable, NPs support new applications
with improved time to market, product’s life time and lower cost.

A number of challenges for NP implementation are already evident,
and power dissipation is one of them. Typical routers mount a few
racks containing groups of line cards (e.g. 8, 16) each of which
contains one or two NPs. Such routers are extremely dense in power
dissipation (e.g. 500 Watts per line card), which causes high operating
temperature. On the other hand, with the demand of increasing
performance, NP’s clock frequency is increasing and more PEs will
be put on an NP. For example, Intel IXP2850 contains 16 Micro-
engines operating at 1.6GHz with 19∼ 25W power consumption [16],
while it’s predecessor IXP1200 contains 6 Microengines operating at
232MHz with 4.5W power consumption.

This paper develops a low power technique by exploiting the
unbalanced network traffic load. It is known that routers experience
different workload during different time of a day. From some of the
NLANR [14] router traces, it can be observed that traffic volume
varies, for example, from 5 to 50 Mbps in a 24-hour period with low
rates at the nighttime. This implies that much less processing power is
required at nighttime compared to the daytime, which leaves the NP
underutilized. This phenomenon brings challenges and opportunities
for low power NP design.

We propose a low power technique to save active power of NPs
without sacrificing the throughput. Our approach is to use the clock
gating technique on PEs when the packet processing requirement is
low, and reopen the clocks when the need is high. The motivation
of using clock gating is to effectively “turn off” PEs but not
actually power them down completely considering the high cost of
powering them up. The decision of turning on/off PEs should be made
dynamically according to the activity of PEs. A good indication is
the number of idle threads that are present in the system. Threads

in NP are sequences of code that run in parallel to receive, process,
and transmit network packets. If some of them are idle, it means that
there are more processing power than the amount required by the
incoming packets. Therefore, we propose to use the number of idle
threads to determine how many active PEs are necessary. If the NP
can process packets with one fewer PEs, then we turn off a PE. To
determine when to turn on a PE, we observe the pressure arising from
the packet incoming buffer. A full buffer indicates low processing
capability from NP, and packet drops may happen. Our goal here is
not to introduce extra packet loss due to clock gating the PEs, but to
guarantee enough process capability at low power consumption.

We investigate the potential problems after turning off the PEs
and give solutions to overcome them. We design techniques to avoid
possible extra packet loss due to turning off of PEs. To accurately
measure and test the effectiveness of our technique, we implemented
our scheme in an NP simulator [7]. We added clock power modeling
to the simulator, and also studied the proper timing to apply clock
gating in NP. We measured the power savings and throughput using
real world router traces from NLANR [14]. Our experiments show
that up to 30% of power savings can be achieved when the traffic is
non-saturated.

The rest of the paper is organized as follows. In section II we
introduce the network processor model that will be used in our
design. Section III provides an overview of the dynamic PE turning
off methodology. Section IV discusses how to solve the problems
introduced by turning off PEs In section V, we make it clear why
clock gating technique is chosen to reduce power, and then give
details on how we modeled clock power. We show the results of
our clock gating technique in section VI and discuss related work in
section VII. Finally, section VIII concludes this paper.

II. NETWORK PROCESSOR MODEL

A network processor usually contains multiple processing cores,
dedicated hardware for common networking operations, high-speed
memory interfaces, high-speed I/O interfaces and interfaces to general
purpose processors. Here we use NePSim simulator [7] to model the
NP architecture. NePSim is based on Intel IXP1200 and includes a
cycle-accurate architecture simulator and a power estimator. Although
IXP1200 was built several years ago and has been advanced to
IXP2400/2850 recently, it still represents a prevalent class of NP
configuration in which the PEs perform similar functionality in
parallel. All the configurations in NePSim are parameterizable, while
the software development kits (SDK) distributed by vendors are not
open-source, nor do they provide power estimations. Other tools such
as the NP analytical models proposed by Franklin et al. [3] are not
suitable for our testbed since we need to obtain accurate timing and
power information in order to evaluate our design.

We therefore decide to use NePSim as a testbed to experiment
the applicability of clock gating PEs. Our technique can be general-
ized to multi-PE-based NP architectures with differences in specific
implementations only.

The reference model of the network processor design follows
IXP1200 and consists of a StrongARM processor, six multi-threaded
PEs called microengines (MEs), memory interfaces, high-speed bus

interfaces. The StrongARM processor is used for management func-
tions such as initializing MEs, running routing protocols, exception
handling. The MEs can be programmed to perform any high-speed
packet inspection, data manipulation, and data transfer. The memory
modules outside IXP1200 are used mainly to store control data
information and packets temporarily. The bus interface, IX bus unit,
transfers data packets between MEs and network interfaces. The
usage of each component is highly dependent on the application and
workload.

III. POLICIES OF DEACTIVATING AND REACTIVATING

PROCESSING ELEMENTS

In this section, we discuss the policies of turning off and on PEs,
and the parameters with their thresholds we use in the policies.

A. Selecting the parameters

The idea of turning off PEs originates from the observation of the
network traffic variation over time. Such variation is usually specified
in terms of packet arrival rate in unit of megabits per second (Mbps).
It is natural to use this information as a guide to making decisions.
However, it is very difficult to set common thresholds on arrival rate
because different applications support different line speeds.

When the NP is overloaded, incoming packets start to be dropped at
network interfaces, which indicates that current NP processing power
is not enough and more number of PEs are needed. Thus, packet loss
is a good indication of the saturation of an NP. Although it can serve
the purpose of waking up inactive PEs, this parameter implies that a
packet has been lost, whereas one of the design goals of our scheme
is to avoid extra packet losses that are introduced due to the reduced
number of PEs for power savings.

Alternatively, a PE should be turned off(on) when the required
workload for the entire NP is low(high) and fewer(more) number of
PEs are enough to handle the workload. Such a status can be indicated
by (1) the idle time of a PE during which the PE does no effective
work; (2) the length of the thread queue in which a thread waits for
incoming packets; and (3) the fullness of an internal packet buffer
where packets come in and wait to be processed.

The idle time of a PE is a measure of the PEs being put into the
sleep mode. A multi-threaded PE sleeps when all of its threads go
to sleep. A thread is put into sleep mode when it needs to wait for
certain events. Two major events are memory access and new packet
arrival, as they are both time consuming. Thus, the idle time of a
PE is a mixture of different events, not a direct suggestion of low
workload even though the PE is not doing any useful work when idle.
As a result, we will not use this parameter in guiding the decision
of turning off the PEs.

The thread queue holds threads that are waiting for the arrival of
new packets. We will explain in section IV.B how the thread queue
is implemented. When a new packet arrives, the head of the queue
wakes up to service the packet. The lower the packet arrival rate the
longer the thread queue. In fact, the number of threads waiting in the
queue is the number of excessive threads for the current traffic load.
In addition, the length of the waiting queue can be easily monitored
with little hardware overhead and is not application-specific. Thus,
we will use it as the main parameter to determine when to clock gate
a PE.

The internal packet buffer is a place to hold temporarily the
incoming packets before a thread fetch them for processing. In
IXP1200, the RFIFO is a buffer of this kind [15]. When the RFIFO
starts to saturate, it implies that current PEs are almost inadequate,
and more processing power is required. When all PEs are operating, it
indicates that the incoming network traffic is too fast to be processed,

and thus packets start to be dropped. We do not address this since
it is the nature of a normal NP even without low power techniques.
When partial PEs are operating, a full RFIFO implies that more PEs
should be brought up to clear off the buffer. Otherwise, packets will
be dropped. Thus we use the fullness of the internal buffers as an
indicator to activate more PEs. We will explain in section IV.C how
extra packet loss can be avoided when new packets arrive before an
entry in the buffer is freed up.

In summary, the parameters we will use are the length of the
thread queue and the fullness of the internal packet buffer. Both
of them are monitored on-chip. The queue length is compared with
certain thresholds at fixed time intervals. If a pre-defined condition
is satisfied, the PEs will be turned off or on. Next, we will discuss
how to determine the thresholds for the parameters.

B. Determining the thresholds

As explained earlier, the length of the thread queue, l, indicates
the number of free threads that are present in the NP due to the low
packet arrival rate. When the system reaches a stable state, the number
of active threads have enough processing power for the incoming
packets, and l thus represents the excessive processing power of the
NP. If the number of threads each PE supports is T , then when l is
greater than T , it means that we could use one fewer PE to sustain
the network traffic. However, l is a varying number since the packet
arrival rate is varying due to the network conditions. Therefore, we
need to estimate the averaged l during a period of observation time,
P , to decide the excessive processing power in the NP.

We monitor the thread queue length l for a period of P cycles.
During this time, l may exceed the value of T for a certain number
of cycles, C. If C accounts for the majority of cycles in P , then
we have high confidence of l being greater than T . Hence, we use a
threshold th (th < P) in the unit of cycles that, when C is greater
than th, a PE will be clock gated. Note that the value of th reflects
how aggressively we shutdown PEs. The smaller the th the more
aggressive our scheme is. We initially set th as half of P , i.e., if
over half of the time there are more number of free threads than
one PE contains, then we turn off one PE. This indicates a medium
agressiveness. After that, we allow th to be updated dynamically so
that different applications and traffic condition can find their own
appropriate thresholds. This is because the th is very application and
network condition dependent. The updating algorithm is as follows.
The th is increased (up to the value of P) if negative impacts, such
as internal packet buffer full, have been observed. On the other hand,
th is lowered if it has not introduced negative impact to the NP. This
means that there still might be excessive processing power left on
average. The advantage of allowing th to adjust itself is that we can
let th converge for an application without the need to find a common
value across all applications.

>

+

counter

True

+alpha

−alphaM
U

X

Buf_pressure+PE−PEl>=T

Shutdown Control

th

Fig. 1. Control logic for PE configuration transition.
We then develop a control logic, as illustrated in Figure 1, for

choosing PE configurations using the thresholds. counter stores the
number of cycles when l >= T . We turn off a PE if counter is
greater than th. When buffers experience pressure, i.e., the buffer is
full, we turn a PE back on. During every period P , th is increased by

alpha if the internal packet buffer has been full once, or is decreased
by alpha otherwise.

IV. DEACTIVATING THE PROCESSING ELEMENTS

A. Terminating threads gradually

To turn off a PE completely, the hardware needs to terminate all
the threads first. However, the threads are either in the middle of
processing a packet or just finished processing a packet. For the latter
case, it is safe to kill the thread immediately. For the former case, the
thread should finish processing the current packet and then terminate.
Otherwise, the packet inside the NP occupied spaces in the packet
buffer (or memory) but nobody would move it out of NP, creating
“leakage” in resources which would eventually be drained out.

When a decision is made on turning off a PE, we set an “off” flag in
that PE informing it to prepare for shutting down. In IXP1200, there
is a “kill” instruction that a thread can use to terminate itself. For
the threads that are responsible for receiving packets and processing
them, they need to check the “off” flag right after finishing processing
a packet. If the flag is set, it executes the “kill” instruction and
relinquish the pipeline resources. Therefore, implementing this part
requires a flag bit per PE and an extra conditional branch and “kill”
instruction in the program.

Since the PEs are multi-threaded processors, at anytime there
is only one thread that is executing in the pipeline. Therefore,
terminating all the threads in a PE takes a while to complete. To
see the duration between a decision is made and the PE is truly
turned off, we measured the time across all the benchmarks. We
found turning off PEs needs up to tens of thousands of cycles which
amounts to 0.0663∼0.240ms at a 232MHz clock rate. This time varies
from different application since the receiving threads are responsible
for processing the packets and different applications have different
processing complexity.

B. Reschedule packets for orphan ports

In some NPs such as IXP1200, the receiving ports are statically
allocated to the PEs that receive and process the packets from those
ports. Hence, when a PE is turned off, the network ports from which
the PE reads packets become “orphans”, i.e., there will be no threads
that receive and process packets from those ports. As a result, the
packets coming from those ports would be dropped. To address this
problem, we develop a dynamic mapping scheme, i.e., every thread
can take packets from every port as long as there is an incoming
packet. Such a dynamic mapping can be found in IXP2400/2800
[16] as well, which demonstrates the readiness of applying our
proposed technique in up-to-date NPs. The main advantage is to
provide flexible scheduling of packets to threads as explained next.

The dynamic mapping is accomplished by adding very simple
hardware in the interface controller. We used a thread queue to
queue up the threads that are requesting packets. We use a hardware
scheduler to scan the existing bit register (“port rdy status”) and
assign a ready port to the thread at the head of the queue, as shown in
Figure 2. In this way, when a thread is ready to receive and process
a new packet, its ID is queued and the thread is put to sleep. The
scheduler scans through the “port rdy status” register and assigns the
ready port number “Ps” to the queue header “Ti”. Thread “Ti” is then
waken up to read a packet from “Ps”. The scheduler scans through
the register in a round-robin fashion.

The dynamic scheduler added to the interface controller will take
some extra time to perform mapping between the ports and the
threads. This is because the scheduler needs to read and test the bit
one by one to find the first bit that is set. Also, the thread’s request
needs to be enqueued and dequeued which are both extra operations

���������
���������
�������
�������

port_rdy_status

P

Ps Pt Pv

1 1 1

issue rcv requestrcv thread

Ti

Tm

Tn

Tj

grant

External Bus
<from interfaces>

packets

Interface Controller

PE

extra buf Thread Queue

Fig. 2. Implementation of dynamic thread-port mapping.

compared to the static scheme. Though reading and testing the status
register bit can be done very quickly, we conservatively charge 1
clock cycle of the 232MHz NP to every operation, i.e., if m bits
are scanned, m cycles are charged. We also charge 1 cycle to thread
enqueue and dequeue respectively. In addition, the controller will
also take up some power which will be included in calculating the
net power savings of the NP. Our experiments show that the dynamic
mapping effectively solves the “orphan” port problem.

C. Avoid extra packet loss

In general, packet loss may happen when the incoming traffic load
exceeds the maximum processing capacity of the NP. We cannot avoid
this kind of packet loss since it is the nature of the NP even if all the
PEs are running. However, when we employ clock gating technique
to turn off some PEs, packets may be lost when they come in burst
but the NP has not responded to such a burst. Specifically, the packets
will quickly fill up the internal packet buffer, and when the buffer
is full, new packets will be dropped. We have discussed earlier that
when the buffer is full, we immediately wake up a PE to drain the
packet buffer.

A clock-gated PE can be waken up very quickly in several cycles
[6]. However, it still takes some more cycles before an entry in the
packet buffer can be cleared. This time includes some initialization of
a thread upon execution and the time to put a thread into the thread
queue. In the NP we modeled, this time is within 50 cycles. If a new
packet arrives in this period, it cannot be captured and moved into
the already saturated internal buffers.

Therefore, we need to use extra buffer space to hold the packets
that arrive before a thread comes to fetch packets. The extra buffer
space is calculated as follows. The delay before a thread is ready to
receive packets is about 50 cycle. The maximal packet throughput we
observed in NePSim is about 1Gbps. Thus we need about 30 bytes
(1Gbps*50cylces/232MHz) extra buffer space. That is, there are at
most 30 bytes coming into the NP during the initiation of a new
PE. Since the IXP1200 fragments packets into 64-byte “mpackets”,
only one additional “mpacket” entry is needed to the packet buffer
(RFIFO) as shown in Figure 2. Thus, the extra buffer space needed
to avoid packet loss is very minimal.

D. Putting it all together

To summarize all the schemes discussed in the previous sections,
the NP keeps a counter which is incremented when the thread queue
length is greater than or equal to T , and is periodically reset by the
“timer” (see Figure 3). When the timer elapses or packet-buffer-full
signal is asserted, the shutdown control logic (Figure 1) will decide
whether a state transition is necessary (implemented using a finite
state machine). Upon a decision, it will generate signals to the “PE
on/off controller”, telling it what action to take on PEs. The controller
then sets or unsets the terminating flag of the selected PE indicating
whether or not it should prepare to stop. It then produces a clock

enable/disable signal to the AND gate performing clock gating to
the entire PE. Note that our shutdown technique is applied to PEs,
not to other dedicated hardware units such as accelerators and CAMs
because modern NPs tend to have large number of power-hungry PEs.
We will investigate power saving techniques for dedicated hardware
units in the near future.

Shutdown
Control

PE on/off
control

timer enable

External Bus

Instruction
memory

Decode,
Compute
register
address

Register
file

A
LU

PE on/off
statusPE

on/off command

l >= T buf_pressure

Interface
Controller

Fig. 3. Synopsis of dynamic clock gating of the PEs.

V. CLOCK GATING

There are many circuit-level approaches proposed to save dynamic
or static power. Examples are dynamic voltage scaling(DVS), power
gating, clock gating etc. Luo et al. [7] proposed to lower clock
frequency and supply voltage (DVS) when there is abundant PE’s
idle time. By partitioning the PEs into several domains operating at
different supply voltages, both static and dynamic power saving are
possible. However, the adjustment of voltage and clock frequency
requires long latency (e.g. 10µs). This period of time is short for
general embedded systems, but not for a NP which supports Gbps
throughput. During this time, no useful work can be conducted by the
PE, and many packets might be dropped. Similarly, the power gating
technology, which has been implemented in the form of “sleep”
modes in embedded systems, has notable latency considering huge
capacitance on the power supply nodes in a unit. Compared with
the above two techniques, clock gating is safe because it’s simple to
implement and requires a latency of only several cycles [6].

Clock gating essentially disables the clock to a circuit to save
power by both preventing unnecessary activity in logic modules and
by eliminating power dissipation on clock network. Clock gating can
be applied in either fine-grained or coarse-grained manner as shown
in Figure 4. Fine-grained allows us to reach miscellaneous small units
in clock sinks and aggressively save their dynamic power even for a
few cycles. Coarse-grained gating saves power from higher level of
the clock tree by removing all clock switching from its down-stream
units.

Enable

Enable1 Enable2 Enable3 Enable4

Module1 Module2 Module3 Module4 Module1 Module2 Module3 Module4

Fig. 4. Clock Gating Mechanisms: coarse grained vs. fine grained.

In this paper, we choose to use coarse-grained scheme since it
is well suited for PEs that can be deactivated for substantially long
period. It also requires less hardware overhead in terms of enabling
gates, gating controllers and wires. Since we gate off the PEs for a
long period of time, e.g. 1 million cycles, it involves less cycle-to-
cycle current variation which could introduce large transient power
on chip. Additionally, entering and exiting clock gating mode is very
fast, taking only a few clock cycles. This capability allows NPs to
be turned on quickly at any time it needs to process traffic spikes.

A. Clock power model

To measure the potential power savings of clock gating, we
added the clock power modeling for various components in NePSim.
We followed the clock models in [1], [2] and made modifications
according to physical features of the IXP1200. The major sources of
clock power we considered include:

• Clock distribution tree (wiring) – We implemented a one-level
H-tree which is a common clock distribution topology. The wire
lengths of the tree is obtained from the IXP1200 die photo [17]
(126mm2 in a 0.28-micron process). We assumed that the H-tree
is located at the center of the PEs.

• Clock Generator (Phase-Locked Loop) – Clock generators are
usually implemented as phase-locked loops (PLL). We used the
power model described in [2] to estimate the power consumption
of PLL component-by-component.

• Clock buffers – Clock buffers are inverter chain with increasing
gate sizes and the ratio between each stage and number of stages
are optimized for speed and minimal skews. We estimated the
capacitance load of clock buffers using an analytical model as
described in [2].

• Pipeline latches – We use Wattch [1] to estimate the power
dissipated by latches in the 5-stage pipeline.

• SRAM array bitline precharge in memory structure – We assume
the register files and the control store (where program is stored)
use the classic 6-transistor cell and a single precharge transistor
per bit line. We obtain the precharge transistor size information
from existing cache model in NePSim (from Cacti) and calculate
their gate capacitances.

• Clock gate capacitance in execution units – Execution units
(e.g. ALU) are often implemented with dynamic logic blocks
for high performance and less area. The clock signal drives the
precharge gates so that the whole logic can be evaluated later.
Hence the precharge gate capacitances in dynamic logic modules
are considered as clock load.

We use TSMC 0.25 µm technology parameters, which is consistent
with NePSim, to estimate the power of the clock loading. The above
clock load in PEs consumes 0.21W, and Figure 5 captures how the
different components contribute to the clock power. Here PLL’s power
is not included in the pie chart, because we assume it’s located out
of PEs.

Besides the explicit clock power consumed in clock distribution
network and precharge gates, there are dynamic logic modules that
consume power due to the process of precharging/evaluating the
storage nodes. With clock gating, we can eliminate the useless
precharge stage during idle time so that power saving can be achieved.

• Execution units – We implemented the custom 32-bit ALU,
which supports binary logic functions (i.e. AND, OR, NOT,
XOR), addition and subtraction, in Cadence toolset. For the
full adder, we used domino Manchester carry chain, because
it’s a standard design as used in Alpha 21064 microprocessor
[18]. The ALU is composed of 3320 gates in total, including
full adder, binary logic, muxes, and input/output drivers. Close

to minimum-size transistors are used except for the carry-
generation circuitry. The large devices used here (up to 7.5 λ

width) speed up the carry propagation, which is on the critical
path. The ALU latency was verified to be within 4.3ns (1
clock cycle) through SpectreS simulations. The average power
consumed by an ALU is 0.03W.

• Control Store wordline decoders – Modern caches use dynamic
logic for wordline decoding and driving. Hence we treat the
capacities of wordline decoder and drivers in control store
(instruction memory) as the clock load. They are modeled in
Cacti.

Wiring
18%

Buffers
48%

Pipeline Reg
8%

Memory
25%

ALU clock
1%

Fig. 5. Total clock ef-
fective capacitance break-
down for six PEs in NeP-
Sim

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

url ipfwdr md4 nat avg

P
o

w
er

static

cmdfifo

ctlstore

xferreg

gpr

shifter

alu

clock

decoder

Fig. 6. Microengine power consump-
tion breakdown

Figure 6 demonstrates the power consumed by individual compo-
nents inside 6 PEs, obtained through the NePSim simulations with
unlimited uniform traffic input. We separate the power of wordline
decoders from the functional units. We observe that the clock load on
average consumes 22% of total PEs’ power, while the dynamic logic
modules (i.e. ALU, decoders) consume 21% of total PEs’ power.
During clock gating, we gate off the circuitry in clock network, as
well as the activity in the dynamic logic modules. Taking these two
factors, we find the total clock related power can achieve 43% of
total PEs’ power. Additionally, no new accesses to the remaining
components of clock-gated PE will happen, so some of the functional
units accesses which consume the rest 50% dynamic power can be
saved.

VI. EXPERIMENT EVALUATION

In this section, we first introduce our experiment environment.
Then we present the power/performance results after applying our
technique on the NP.

A. Benchmark applications and input traffic patterns

There are four benchmarks that are currently ported to NePSim.
They are ipfwdr, url, nat, and md4. The ipfwdr implements an IPv4
router which forwards IP packets between networks. The url is a
content-aware routing program that routes packets based on their
contained URL request. The nat is a network address translation
program. The md4 is a cryptography algorithm used in SSL or firewall
to generate 128-bit digital signature on an arbitrary length message.
We will use all these four benchmarks in our design and experiments.

We evaluate our design with real network packet traces (e.g.
Leipzig-I) from NLANR[14]. The advantage of using real network
traces is that they represent typical Internet traffic, in terms of packet
size and arrival rate, seen by a router. However, due to the limited
simulation speed of NePSim,it is too expensive to simulate the entire
traces of dozens of hours. Since NePSim simulates a multi-core and
multi-threaded architecture, it usually takes more than an hour to
simulate one second of real world trace. We therefore sample a few
seconds of real traffic with different arrival rates as individual inputs
to the simulator.

B. Power overhead of the control logic

We extended the NePSim simulator with clock power modeling
(discussed in section V), so that we can measure the power savings
of clock gating. For the execution units, pipeline latches, memory
wordline decoders, the dynamic and static power is included if it is
not clock-gated. If the circuit is clock-gated in a cycle, zero power
is added.

We also take into account the power overhead associated with
the additional control logic in Figure 1 and 3. We included the
power overhead of the counters, threshold registers, thread queue
and comparators measured both with Cadence and the Wattch model
using 0.25µm technology, and found they consume negligible power,
i.e. 0.00038 Watts for a 20-bit counter or register, 0.002 Watts for
a comparator, 0.0065 Watts for 24 entry thread queue. The extra
buffer we added increase the buffer access energy by 3.4% which
is very small, considering the fact that the original receive buffer
only contributes less than 2% of NP power ([7]). Additionally, the
controller includes a finite state machine (FSM) which decides the PE
on/off decision and an adder. The FSM only has a handful of states.
Both FSM and the adder are used just once in each time window,
so their contribution to the overall power consumption is very small.
We conservatively charge 2% of total PE power as the overhead of
the controller.

C. Experiment results

We experimented with several traces and present the results of
Leipzig-I trace because its link speed falls in the capacity of the
IXP1200 NP system. Using other traces have similar results. We
scan the trace and extract four segments with different packet arrival
rates. For each segment of traces, We feed it to the 16 input ports
of NePSim. In this way we formed four traces with the overall
arrival rates of, from low to high, ∼90Mbps, ∼180Mbps, ∼360Mbps
and ∼480Mbps respectively. We tested different length of shutdown
period P ranging from 125K to 8M cycles and found that it affects
little to the results. We thus choose 1M cycles as the shutdown period
since it can hide well the longest PE shutdown latency observed
(60K cycles for url). The initial th is set to 500K cycles (half of 1M
cycles) to represent medium aggressiveness. The threshold adjustment
amount alpha is set to 2% of P . The metrics we evaluate are power
consumption (in Watts), throughput (in Mbps), and PE utilization.

Figure 7 shows the power saving of four benchmarks at different
input traffic loads. The power savings are significant in all cases we
tested. At the lowest traffic load, up to 30% of the power can be
saved for ipfwdr and nat. md4 and url saved about 15% and 14%
respectively. As the traffic load increases, the power saving amount
decreases because less power saving opportunity can be exploited. At
the highest traffic load, power reduction numbers are the lowest, but
still there are 17%, 15%, 12%, 6% of the total power saved for nat,
ipfwdr, md4, url respectively. Among the four benchmarks, nat

has the most power savings while url has the least. This is because
the per-packet processing time of nat is the shortest, so on average
the thread queue is the longest. This implies that more power saving
opportunities can be exploited by our scheme. On the other hand,
url has the longest processing time, resulting in the shortest thread
queue and the least PE shutdown opportunity.

Our clock gating scheme has very little impact on the system
throughput as shown in Figure 8. Deactivating PEs reduced through-
put by at most 4% (url with high traffic load). When less number of
PEs are active, the packets tend to stay longer in the internal buffer
before they are processed and drained out of the NP system. As a
result, the system throughput decreases. Note that lower throughput
does not imply packet losses; there is no packet loss with the help

of the extra one-entry buffer. In addition, if the traffic load continues
to increase towards the NP system capacity, the internal buffer will
become saturated and clock gating to PEs will not be applied. Thus
there will be no reduction of throughput in such situations. This
phenomenon is not shown in the graph.

From a different perspective, our low-power technique exploits low
utilization of NP under low network traffic. By turning off PEs we
effectively improve PE utilization while saving power significantly.
We plot the utilization of the active PEs in Figure 9 under different
traffic load. Each sub-figure compares the utilization of the active PEs
with and without clock gating (base case). Figure 9 shows that in all
the traffic load we tested, shutting down PEs improved the utilization
of the active ones by up to 20% (url under 360Mbps).

Note that the power saving data we present here is in one second
period. The overall power saving on a daily basis is tremendous
considering that low traffic period contributes to a large portion of a
day.

0%

5%

10%

15%

20%

25%

30%

35%

90 180 360 480
Mbps

p
o

w
er

 s
av

in
g

Ipfwdr

Nat

Md4

Url

Fig. 7. power saving vs packet
arrival rate.

0%

1%

2%

3%

4%

5%

Ipfwdr nat Md4 Url

T
h

ro
u

g
h

p
u

t
R

ed
u

ct
io

n

90Mbps 180Mbps
360Mbps 480Mbps

Fig. 8. Throughput reduction vs
packet arrival rate.

90Mbps

0%

10%

20%

30%

40%

50%

60%

ipfwdr nat md4 url

P
E

 U
ti

liz
at

io
n

shutdown
base

180Mbps

0%

10%

20%

30%

40%

50%

60%

ipfwdr nat md4 url

P
E

 u
ti

liz
at

io
n

shutdown
base

360Mbps

0%

10%

20%

30%

40%

50%

60%

ipfwdr nat md4 url

P
E

 U
ti

liz
at

io
n

shutdown
base

480Mbps

0%

10%

20%

30%

40%

50%

60%

ipfwdr nat md4 url

P
E

 U
ti

liz
at

io
n

shutdown
base

Fig. 9. ME utilization.

VII. RELATED WORK

Recently, power reduction techniques for NPs have appeared at
various levels. Luo et al. presented how to apply dynamic voltage
scaling (DVS) to reduce NP’s power. Kaxiras et al. proposed IPStash
memory architecture to act as a TCAM (used in packet classification
and routing) replacement, which significantly reduces the memory
set associativity and thus power [5]. Franklin and Wolf developed an
analytic performance-power model for typical NPs. They explored
the design space of NPs and showed performance-power impact of
different systems [3]. Mallik and Memik investigated the relation
between transient errors and lowering the voltage for the cache
memories of an NP to save power [8]. Lastly, Memik and Mangione-
Smith proposed a data filtering engine (DFE) that processes data with
low locality before it is placed on the system bus [9]. Significant
power saving is achieved for the system bus.

Numerous other work focus on boosting NP performance, i.e.
packet processing throughput. Hasan et al. proposed a series of

techniques to improved packet memory throughput, hence the packet
throughput [4]. Sherwood et al. proposed a pipelined memory design
that emphasizes worst-case throughput over latency, and co-explore
architectural tradeoffs [11]. Spalink et al. experienced using IXP1200
to build a robust inexpensive router that forwards minimum-sized
packets at a high throughput [12].

VIII. CONCLUSION

We investigated mechanisms to lower the power consumption
of NPs under non-saturated incoming traffic rates in routers. We
studied thresholds parameters that can be used to turn on/off PEs. We
presented scheduling policies to address the problems that occur to
PE shutdown. In addition, we described the clock power and clock-
gating technique. Our experiments show a significant reduction in
power consumption of an NP taking network traffic traces of real-
world routers. In the near future we will investigate power saving
techniques on other components used by NPs.

REFERENCES

[1] D. Brooks, V. Tiwari, M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” the 27th Annual
International Symposium on Computer Architecture, pp. 83-94, 2000.

[2] D. E. Duarte, N. Vijaykrishnan, M. J. Irwin, “A Clock Power Model
to Evaluate Impact of Architectural and Technology Optimizations,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, pp. 844-855,
Vol. 10, Iss. 6, Dec. 2002.

[3] M. Franklin and Tilman Wolf, “Power Considerations in Network Pro-
cessor Design,” Workshop on Network Processors – NP2, in conjunction
with HPCA9, pp. 10–22, 2003.

[4] J. Hasan, S. Chandra, and T. N. Vijaykumar, “Efficient Use of Memory
Bandwidth to Improve Network Processor Throughput,” The 30th Interna-
tional Symposium on Computer Architecture (ISCA), pp. 288–299, 2003.

[5] S. Kaxiras and G. Keramindas, “IPStash: a Power-Efficient Memory
Architecture for IP-lookup,” The 36th International Symposium on Mi-
croarchitecture (MICRO), pp. 361, 2003.

[6] H. Li, S. Bhunia, Y. Chen, T.N. Vijaykumar, K. Roy, “Deterministic
Clock Gating for Microprocessor Power Reduction,” Proceedings of the
The Ninth International Symposium on High-Performance Computer Ar-
chitecture (HPCA’03), pp 113.

[7] Y. Luo, J. Yang, L. Bhuyan, L. Zhao, “NePSim: A Network Processor
Simulator with Power Evaluation Framework,” IEEE Micro Special Issue
on Network Processors for Future High-End Systems and Applications,
Sept/Oct 2004.

[8] A. Mallik and G. Memik, “A Case for Clumsy Packet Processors,”
to appear in the 37th International Symposium on Microarchitecture
(MICRO), Portland / OR, Dec. 2004

[9] G. Memik and W. H. Mangione-Smith, “Improving Power Efficiency
of Multi-Core Network Processors Through Data Filtering,” International
Conference on Compilers, Architecture and Synthesis for Embedded Sys-
tems (CASES), pp. 108–116, 2002.

[10] M. D. Powell, S. Yang, B. Falsafi, K. Roy, T. N. Vijaykumar, “Gated-
Vdd: A Circuit Technique to Reduce Leakage in Deep-Submicron Cache
Memories,” International Symposium on Low Power Electronics and De-
sign (ISLPED), pp. 90-95, 2000.

[11] T. Sherwood, G. Varghese, and B. Calder, “A pipelined memory ar-
chitecture for high throughput network processors,” The 30th Annual
International Symposium on Computer Architecture (ISCA), pp. 288–299,
2003.

[12] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb, “Building a Robust
Software-Based Router Using Network Processors,” Symposium on Oper-
ating Systems Principles (SOSP), pp. 216–229, 2001.

[13] EZchip Technology, http://www.ezchip.com/
[14] The NLANR Measurement and Network Analysis, http://www.nlanr.net/
[15] Intel Corporation, “IXP1200 Network Processor Family Hardware Ref-

erence Manual,”
http://developer.intel.com/design/netwrok/ixa.html, 2001.

[16] Intel IXP2XXX Product Line of Network Processors,
http://www.intel.com/design/network/products/npfamily/ixp2xxx.htm

[17] T.R. Halfhill, Intel Network Processor Targets Routers, Microprocessor
Report, Volume 13, NUMBER 12, September 13, 1999

[18] Wayne Wolf, Modern VLSI Design, System-On-Chip Design, Prentice
Hall, 3rd edition.

